Biomarker in CFS/ME Current status

- Many studies on altered biomarkers
- Most alterations only in subsets of CFS/ME patients/ overlap with controls
- most studies were performed in single centers using
- non standardized assays and various case definitions
- Assays based on flow cytometric cell phenotyping or functional assays analysing cytokine production or cytotoxic function are difficult to standardize

No diagnostic biomarker available yet

Immune biomarker in CFS

Biomarkers	References
>IL-10, IFN _γ , TNFα by PHA stimulated lymphocytes; >CD4+CD25+ T cells expressing FoxP3 and VPACR2; <cytotoxic <granzyme="" activity="" and="" cd8+t="" cells;="" nk="" of="">perforin by gene expression in CFS/ME compared to HC at rest.</cytotoxic>	Brenu, et al., 2011
>IL-4, IL-5, IL-12, LTα, IL-1α, IL-1β, IL-6; <il-8, at="" cfs="" compared="" hc="" ifnγ,="" il-13,="" il-15;="" il-17,="" il-23,="" in="" me="" of="" plasma="" rest.<="" td="" tnfα="" to="" ≥il-2,=""><td>Fletcher, et al., 2009</td></il-8,>	Fletcher, et al., 2009
Cytokine co-expression networks distinct in CFS/ME compared to HC. Subjects at rest.	Broderick, et al., 2010
Perforin in NK cells and CD8+T cells by quantitative flow cytometry. CFS/ME compared to HC at rest	Maher, et al., 2005
<perforin at="" by="" challenge<="" compared="" exercise="" expression="" gene="" gwi="" hc="" in="" p="" to="" vo₂max=""></perforin>	Whistler, et al, 2009
<nk <="" cell="" cytotoxicity;="" dipeptidyl="" iv;="" peptidase="" plasma="">T-cell activation. CFS/ME compared to HC at rest</nk>	Fletcher, et al., 2010a
In CFS/ME compared to HC: absence of significant increase in IL-6 & TNFα following exercise challenge	Jammes, et al., 2009
IL-1β, IL-12, IL-6, IL-8, IL-10, and IL-13 elevated at 8 hrs post exercise in subjects showing symptom flair at 48 hrs.	White, et al, 2010
>NPY in CFS/ME subjects compared to HC at rest;	Fletcher, et al., 2010b
no exercise related change for NPY, IL-6, IL-10, IL12, TNFα in CFS/ME but > in HC	Harvey, et al., 2011
Serum vitamin E, a marker for oxidative stress in CFS/ME compared to HC at rest	Miwa & Fujita, 2010
Exercise related <plasma (marker="" cfs="" effect="" exercise="" f(2)-isoprostanes="" hc.<="" il-6="" in="" me="" no="" of="" on="" or="" oxidative="" plasma="" sil-6r="" stress);="" td=""><td>Robinson, et al., 2010</td></plasma>	Robinson, et al., 2010
In most CFS/ME but not in HC, exercise >transcription for most sensory and adrenergic receptors and one cytokine which correlated with fatigue and pain.	Light, et al, 2012
Metabolic syndrome predictors elevated in CFS/ME compared to HC at rest.	Maloney, et al, 2010
Increased lactate levels in ventricular cerebrospinal fluid of CFS/ME compared to HC at rest.	Murrough et al. 2010
Significant deficiencies in mitochondrial function in CFS/ME compared to HC at rest.	Myhill et al., 2009
Quantitative proteomics using high resolution mass spectrometry of CSF, unique patterns associated with CFS compared to HC and Lyme disease at rest.	Schutzer, et al., 2011
Unique CFS/ME spinal fluid proteome of 60 proteins when compared to HC and GWI. The CFS/ME and GWI patients shared 20 unique proteins at rest.	Baraniuk et al 2005
> CRP, >8-iso-prostaglandin F(2 alpha) isoprostanes in CFS/ME compared to HC at rest	Spence, et al, 2008
<lps at="" cfs="" compared="" cytokines="" hc="" in="" induced="" me="" pro-inflammatory="" psychological="" rest<="" stress="" td="" to="" under=""><td>Gaab et al, 2005</td></lps>	Gaab et al, 2005
> CRP in CF cases not meeting the CFS/ME definition; no difference between CFS/ME and HC at rest	Raison et al, 2009
Abnormal pattern of cortisol over 24 hours associated with elevated fatigue.	Torres-Harding, et al 2009
<cortisol a="" and="" associated="" cbt="" cfs="" cortisol)="" diurnal="" flattened="" in="" levels="" me.<="" of="" poorer="" release="" response="" td="" to="" with=""><td>Roberts, et al., 2010</td></cortisol>	Roberts, et al., 2010
Variations in the 5' region of NR3C1 (glucocorticoid receptor gene) in CFS/ME compared to HC at rest.	Rajeevan et al., 2007
HPA axis dysfunction in CFS/ME compared to HC at rest.	Papadopoulos & Cleare, 2011
HPA axis dysfunction CFS/ME compared to HC at rest.	Ben-Zvi, et al., 2009
No evidence for biomarkers using gene expression in a twin study.	Byrnes et al., 2009
Significant evidence for a heritable contribution to predisposition to CFS/ME.	Albright, et al, 2011
Gene expression revealed 'CFS signature genes'.	Kerr, et al., 2008
Reassessment of 'CFS signature genes' failed to confirm predictive ability.	Frampton, et al., 2011

Brain Behav Immun. 2012 Nov;26(8):1202-10. doi: 10.1016/j.bbi.2012.06.006. Epub 2012 Jun 23.

Biomarkers for chronic fatigue.

Klimas NG¹, Broderick G, Fletcher MA.

The objectives:

- 1) Establish special interest groups within the network able to take fragmented research in a harmonised way
- 2) Survey in EU countries existing data on potential biomarkers in ME/CFS:
- immunological
- infection-associated
- genetic and epigenetic biomarkers,
- neuro-imaging/neuro markers

Immunological markers

Infection markers

Genetic markers Neurological Imaging and functional markers

Metabolic markers?

- ME/CFS biomarker research landscape
 - Database?
- translational platform (Biomarker monitoring for clinical trials/SOPs)?

Cohort validation studies?

Collaborative Research Projects?

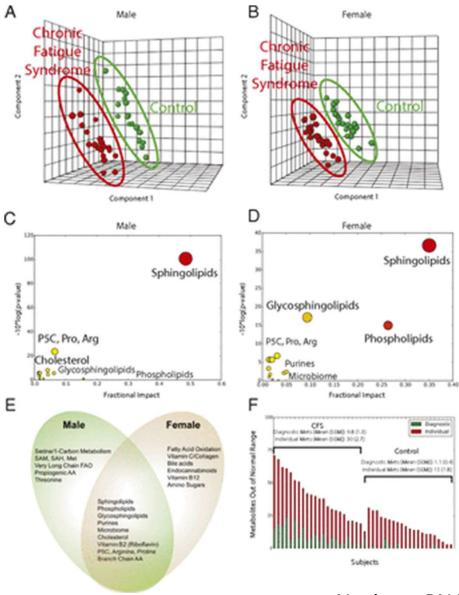
Clinical trials?

Immunological markers
C. Scheibenbogen

Infection markers Genetic markers E. Capelli Neurological Markers J. Authier Metabolic markers?

•••••

- ME/CFS biomarker research landscape
 - Database?
- translational platform (Biomarker monitoring for clinical trials/SOPs)?


Cohort validation studies?

Collaborative Research Projects?

Clinical trials?

Naviaux, PNAS 2016

Immunological markers
C. Scheibenbogen

Infection markers

Genetic markers E. Capelli Neurological Markers J. Authier Metabolic markers?

How to achieve our goals?

- 2) Survey on biomarker to establish an "European biomarker landscape"
- biomarker/research groups/fundings?
 - Organize via MC members for each country?
 - via Pub med survey?
- 1) Establish special interest groups within the network able to take **fragmented** research in a harmonised way.
 - Review?

Reviews on biomarker in CFS

Jason LA, Zinn ML, Zinn MA.

Myalgic Encephalomyelitis: Symptoms and Biomarkers

Curr Neuropharmacol. 2015:701-34. Review.

Blundell S, Ray KK, Buckland M, White PD.

Chronic fatigue syndrome and circulating cytokines: A systematic review.

Brain Behav Immun. 2015 Nov;50:186-95.

Fischer DB, William AH, Strauss AC, Unger ER, Jason L, Marshall GD Jr, Dimitrakoff JD. <u>Chronic Fatigue Syndrome: The Current Status and Future Potentials of Emerging **Biomarkers**.</u>

Fatigue. 2014 Jun 1;2(2):93-109.

Klimas NG, Broderick G, Fletcher MA.

Biomarkers for chronic fatigue.

Brain Behav Immun. 2012 Nov;26(8):1202-10.

Immunological markers
C. Scheibenbogen

Infection markers

Genetic markers E. Capelli Neurological Markers J. Authier Metabolic markers?

How to achieve our goals?

- 2) Survey on biomarker to establish an "European biomarker landscape"
- biomarker/research groups/fundings?
 - Organize via MC members for each country?
 - via Pub med survey?
- 1) Establish special interest groups within the network able to take **fragmented** research in a harmonised way.
 - Review?
 - Critically appraised topics e.g. autoantibodies, soluble marker, NGS, lipids?

Critical appraised topics

- **1. Ask**ing a focused question
- 2. Searching for the best available evidence
- 3. Critically **Apprais**ing the evidence for validity and clinical relevance
- **4. Apply**ing the results to clinical practice
- **5. Evaluation** of performance
- **1. Ask**: Are there soluble markers which may be suited as diagnostic markers in CFS?
- 2. Search Single studies, Reviews, Expert reviews
- **3.** Appraise Critical reading of studies
- 4. Apply Performing selected assays in single cohorts
- **5.** Evaluation in various labs and different cohorts

sCD26 as biomarker

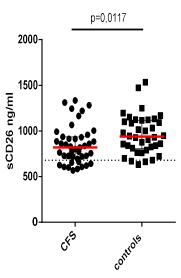
PLoS One. 2010 May 25;5(5):e10817. doi: 10.1371/journal.pone.0010817.

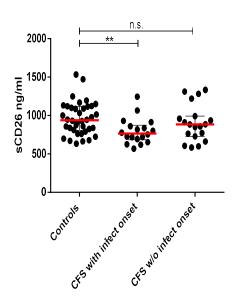
Biomarkers in chronic fatigue syndrome: evaluation of natural killer cell function and dipeptidyl peptidase IV/CD26.

Fletcher MA¹, Zenq XR, Maher K, Levis S, Hurwitz B, Antoni M, Broderick G, Klimas NG.

	N / CCC				
Variable	Number of CFS Cases	Median (25–75 th percentile)	Number of Healthy Controls	Median (25-75 th percentile)	p
NKCC%	176	12 (8–21)	230	28 (20–37)	.000
% CD26+CD2+ Cells	75	61 (55–66)	100	52 (47–59)	.000
sCD26 in Serum (ng/ml)	73	489 (396–643)	122	671 (496–871)	.000
Mol CD26/CD2+ Cell	77	3625 (2844–4633)	102	4388 (3600–5388)	.001

^a>80% female, average age 48;


b>80% female, average age 47.


doi:10.1371/journal.pone.0010817.t001

confirmatory studies:

- Hanevik K, 2012
- Fenouillet 2016

Own data

Immunological markers
C. Scheibenbogen

Infection markers

Genetic markers E. Capelli Neurological Markers J. Authier Metabolic markers?

How to achieve our goals?

- 2) Survey on biomarker to establish an "European biomarker landscape"
- biomarker/research groups/fundings?
 - Organize via MC members for each country?
 - via Pub med survey?
- 1) Establish special interest groups within the network able to take **fragmented** research in a harmonised way.
 - Review?
 - Critically appraised topics e.g. autoantibodies, soluble marker, NGS, lipids?
 - Validate in EUROMENE network

Immunological markers
C. Scheibenbogen

Infection markers

Genetic markers E. Capelli Neurological Markers J. Authier Metabolic markers?

- ME/CFS biomarker database and research landscape
- translational platform (Biomarker monitoring for clinical trials/SOPs)

Cohort validation studies

How to achieve this?

- Cohort/Longitudinal studies of selected markers?
- Correlation with clinical data?

Immunological markers
C. Scheibenbogen

Infection markers Genetic markers E. Capelli Neurological Markers J. Authier Metabolic markers?

.....

- ME/CFS biomarker research landscape
 - Database?
- translational platform (Biomarker monitoring for clinical trials/SOPs)?

Cohort validation studies?

Collaborative Research Projects?

Clinical trials?

Immunological biomarkers

- Autoantibodies
 - C. Scheibenbogen
- Genetics
 - E. Capelli
- CSF J. Blomberg?
- Exercise response?
- •
- •
-
-

Neurological
Imaging and
functional
Markers
J. Authier

Metabolic biomarkers
J. Blomberg?

Infection biomarkers

.....

Autontibodies in CFS/ME

Navaneetharaja et al. A Role for the Intestinal Microbiota and Virome in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS)? J. Clin. Med. 2016

Antigen Target of Autoantibodies	Reference
Cardiolipin	Hokama et al., 2008 [99] Hokama et al., 2009 [100]
Nuclear envelope antigens	Konstantinov et al., 1996 [1
Neuronal cell	Buchwald et al., 1991 [102]
68/48 kD protein antibodies	Nishikai, M., 2007 [103]
Serotonin, microtubule-associated protein 2 and muscarinic cholinergi	ic receptor-1 Bassi et al., 2008 [104]
5-HT, gangliosides and phospholipids	Klein and Berg, 1995 [105]
Muscarinic cholinergic receptor	Tanaka et al., 2003 [97]

Immunological biomarker

Infection biomarker

Genetic biomarker Metabolic biomarker?

Neurological Imaging and functional markers

- ME/CFS biomarker database and research landscape
- translational platform (Biomarker monitoring for clinical trials/SOPs)

Collaborative Research Projects

Immunological biomarker

Infection biomarker

Genetic biomarker Metabolic biomarker?

Neurological Imaging and functional markers

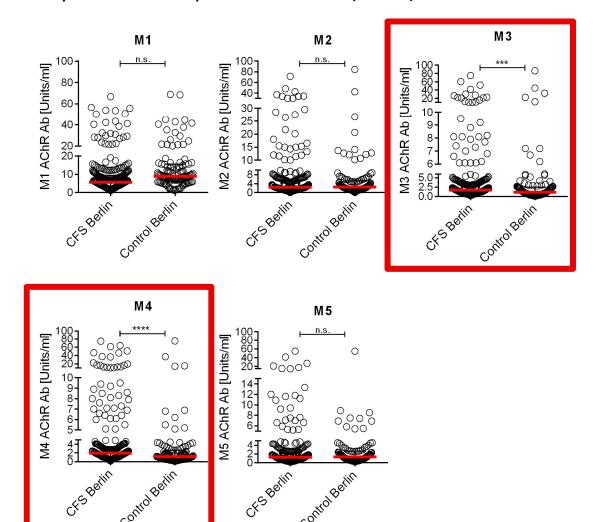
- ME/CFS biomarker database and research landscape
- translational platform (Biomarker monitoring for clinical trials/SOPs)

Clinical trials

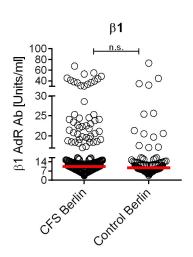
Autoantibodies against neurotransmitter receptors in CFS/ME

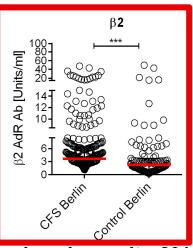
Collaboration with Dr. Heidecke, Fa. Celltrend, Luckenwalde and Drs. Fluge/Mella, Universität Bergen

Cohorts:


286 Berlin CFS/ME patients, 25 Bergen CFS/ME patients 108 healthy controls

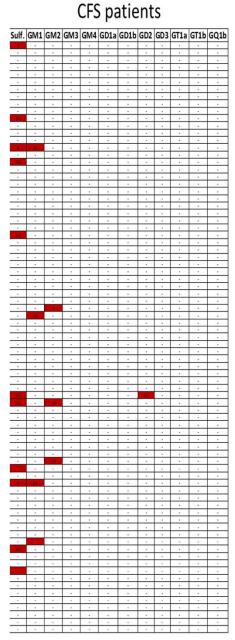
ELISA analysis of serum autoantibodies against:


- Muscarinergic acetylcholine receptor (M1-5)
- Adrenergic receptor (β 1+2, α 1)
- Dopamine receptor (D1-4)
- Serotonin receptor (5 HT1,2,5,6,7)
- Angiotensinreceptor
- Endothelinreceptor

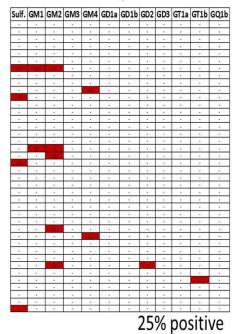

Elevated autoantibodies against neurotransmitter receptors in 30% of CFS/ME patients

Acetylcholine receptor antibodies (M1-5)

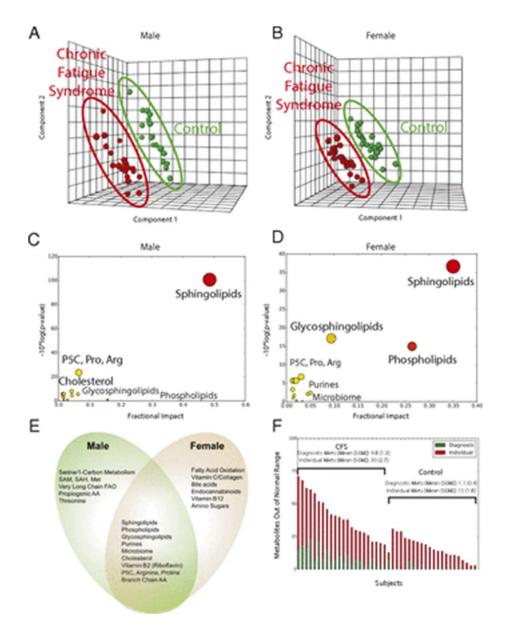
Adrenergic receptorantibodies (\$1+2)



Brain, Behaviour, Immunity, 2016



Antibodies against several subtypes of gangliosides – own data*


* in collaboration with Prof . Roggenbuck Generic Assays

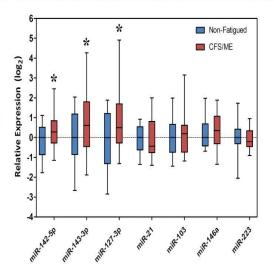
Healthy controls

18.5% positive

We found no strong difference in microRNA

Data on microRNAs as biomarkexpression:

RESEARCH ARTICLE


MicroRNAs hsa-miR-99b, hsa-miR-330, hsamiR-126 and hsa-miR-30c: Potential Diagnostic Biomarkers in Natural Killer (NK) Cells of Patients with Chronic Fatigue Syndrome (CFS)/ Myalgic Encephalomyelitis (ME)

Robert D. Petty 1.2*, Neil E. McCarthy3, Rifca Le Dieu2, Jonathan R. Kerr1.4

2016, Plos One

PLoS One. 2014 Sep 19;9(9):e102783. doi: 10.1371/journal.pone.0102783. eCollection 2014.

High-throughput sequencing of plasma microRNA in chronic fatigue syndrome. Brenu EW1, Ashton KJ2, Batovska J2, Staines DR3, Marshall-Gradisnik SM1.

PAXg

gene	whol	e blo	od :	Sa	- Agilent 1	<mark>echnolog</mark> i	_{es} t			
<u> </u>	<u> </u>		3					Villa II		
	me	an	FC	\log_2	t-t	est	AUC	A.S.		
	group 1	group 2	10	FC	raw p	adj. p	HOO	1700		
iR-144-5p	9.42	9.97	0.68	-0.55	1.26E-04	4.31E-03	0.70			
iR-126-3p	10.35	10.80	0.73	-0.46	6.33E-06	8.36E-04	0.74	L_6		
iR-26b-5p	11.35	11.80	0.73	-0.45	5.21E-06	8.36E-04	0.74	- E	100	
iR-374b-5p	9.39	9.80	0.76	-0.40	1.62E-05	1.33E-03	0.75	JÉ	ALC: N	- 17
t-7f-5p	12.43	12.80	0.77	-0.38	1.05E-04	3.90E-03	0.70	E		179117 3030707
iR-454-3p	7.03	7.39	0.78	-0.36	6 12F-04	1.47F-02	0.66			

Group 1 healthy Group 2 CFS FC (healthy rel. to

	2.7.5	ean	FC	log_2	t-t	est	AUC
	group 1	group 2	10	FC	raw p	adj. p	
hsa-miR-144-5p	9.42	9.97	0.68	-0.55	1.26E-04	4.31E-03	0.70
hsa-miR-126-3p	10.35	10.80	0.73	-0.46	6.33E-06	8.36E-04	0.74
hsa-miR-26b-5p	11.35	11.80	0.73	-0.45	5.21E-06	8.36E-04	0.74
hsa-miR-374b-5p	9.39	9.80	0.76	-0.40	1.62E-05	1.33E-03	0.75
hsa-let-7f-5p	12.43	12.80	0.77	-0.38	1.05E-04	3.90E-03	0.70
hsa-miR-454-3p	7.03	7.39	0.78	-0.36	6.12E-04	1.47E-02	0.66
hsa-let-7d-5p	11.95	12.29	0.79	-0.34	2.70E-06	8.36E-04	0.76
hsa-miR-98-5p	6.23	6.56	0.79	-0.33	5.41E-04	1.38E-02	0.69
hsa-miR-100-5p	7.24	6.91	1.25	0.32	4.47E-01	6.88E-01	0.47
hsa-let-7g-5p	12.61	12.93	0.80	-0.32	1.99E-05	1.36E-03	0.72
hsa-let-7a-5p	13.98	14.30	0.80	-0.32	6.49E-05	3.79E-03	0.70
hsa-miR-363-3p	11.77	12.09	0.80	-0.32	8.18E-06	8.36E-04	0.79
hsa-miR-21-5p	10.81	11.12	0.81	-0.31	2.26E-04	7.11E-03	0.71
hsa-miR-148a-3p	8.01	8.31	0.81	-0.30	3.74E-03	5.67E-02	0.67
hsa-miR-20b-5p	10.70	11.00	0.81	-0.30	1.63E-03	2.90E-02	0.67
hsa-miR-151a-5p	10.99	11.27	0.82	-0.28	7.79E-05	3.90E-03	0.72
hsa-miR-374a-5p	8.17	8.44	0.83	-0.27	6.80E-03	7.94E-02	0.65
hsa-miR-4730	7.08	6.81	1.21	0.27	2.86E-02	1.98E-01	0.37
hsa-miR-6716-3p	6.93	6.66	1.21	0.27	2.61E-02	1.87E-01	0.36
hsa-miR-424-5p	5.19	5.46	0.83	-0.27	2.41E-03	4.10E-02	0.67
hsa-miR-451b	6.69	6.42	1.20	0.27	2.40E-02	1.76E-01	0.36
hsa-miR-126-5p	4.85	5.11	0.83	-0.27	8.61E-04	1.85E-02	0.68
hsa-miR-101-3p	8.18	8.44	0.83	-0.26	1.66E-02	1.38E-01	0.61
hsa-miR-199a-3p	5.84	6.09	0.84	-0.25	1.08E-02	1.08E-01	0.63
hsa-miR-29c-3p	9.05	9.29	0.85	-0.24	4.46E-03	6.31E-02	0.67
hsa-miR-24-3p	10.19	10.42	0.85	-0.24	1.31E-03	2.55E-02	0.70
hsa-miR-15a-5p	12.38	12.61	0.85	-0.24	2.49E-04	7.27E-03	0.68
hsa-miR-301a-3p	5.52	5.75	0.85	-0.23	5.49E-03	7.24E-02	0.66
hsa-miR-183-5p	8.78	9.02	0.85	-0.23	6.92E-02	2.78E-01	0.61
hsa-miR-181a-5p	8.04	8.27	0.86	-0.22	1.40E-02	1.25E-01	0.66

Validation experiments failed to reproduce expression levels of microRNAs by single tube PCRs using miRCURYTM LNA named ALR

Biomarker in CFS

Biomarkers	References
>IL-10, IFN γ , TNF α by PHA stimulated lymphocytes; >CD4+CD25+ T cells expressing FoxP3 and VPACR2; <cytotoxic <granzyme="" activity="" and="" cd8+t="" cells;="" nk="" of="">perforin by gene expression in CFS/ME compared to HC at rest.</cytotoxic>	Brenu, et al., 2011
>IL-4, IL-5, IL-12, LTα, IL-1α, IL-1β, IL-6; <il-8, at="" cfs="" compared="" hc="" ifnγ,="" il-13,="" il-15;="" il-17,="" il-23,="" in="" me="" of="" plasma="" rest.<="" td="" tnfα="" to="" ≥il-2,=""><td>Fletcher, et al., 2009</td></il-8,>	Fletcher, et al., 2009
Cytokine co-expression networks distinct in CFS/ME compared to HC. Subjects at rest.	Broderick, et al., 2010
<perforin and="" at="" by="" cd8+t="" cells="" cfs="" compared="" cytometry.="" flow="" hc="" in="" me="" nk="" p="" quantitative="" rest<="" to=""></perforin>	Maher, et al., 2005
<perforin at="" by="" challenge<="" compared="" exercise="" expression="" gene="" gwi="" hc="" in="" td="" to="" vo₂max=""><td>Whistler, et al, 2009</td></perforin>	Whistler, et al, 2009
<nk <="" cell="" cytotoxicity;="" dipeptidyl="" iv;="" peptidase="" plasma="">T-cell activation. CFS/ME compared to HC at rest</nk>	Fletcher, et al., 2010a
In CFS/ME compared to HC: absence of significant increase in IL-6 & TNFα following exercise challenge	Jammes, et al., 2009
IL-1β, IL-12, IL-6, IL-8, IL-10, and IL-13 elevated at 8 hrs post exercise in subjects showing symptom flair at 48 hrs.	White, et al, 2010
>NPY in CFS/ME subjects compared to HC at rest;	Fletcher, et al., 2010b
no exercise related change for NPY, IL-6, IL-10, IL12, TNFα in CFS/ME but > in HC	Harvey, et al., 2011
<serum a="" at="" cfs="" compared="" e,="" for="" hc="" in="" marker="" me="" oxidative="" p="" rest<="" stress="" to="" vitamin=""></serum>	Miwa & Fujita, 2010
Exercise related <plasma (marker="" cfs="" effect="" exercise="" f(2)-isoprostanes="" hc.<="" il-6="" in="" me="" no="" of="" on="" or="" oxidative="" plasma="" sil-6r="" stress);="" td=""><td>Robinson, et al., 2010</td></plasma>	Robinson, et al., 2010
In most CFS/ME but not in HC, exercise >transcription for most sensory and adrenergic receptors and one cytokine which correlated with fatigue and pain.	Light, et al, 2012
Metabolic syndrome predictors elevated in CFS/ME compared to HC at rest.	Maloney, et al, 2010
Increased lactate levels in ventricular cerebrospinal fluid of CFS/ME compared to HC at rest.	Murrough et al. 2010
Significant deficiencies in mitochondrial function in CFS/ME compared to HC at rest.	Myhill et al., 2009
Quantitative proteomics using high resolution mass spectrometry of CSF, unique patterns associated with CFS compared to HC and Lyme disease at rest.	Schutzer, et al., 2011
Unique CFS/ME spinal fluid proteome of 60 proteins when compared to HC and GWI. The CFS/ME and GWI patients shared 20 unique proteins at rest.	Baraniuk et al 2005
> CRP, >8-iso-prostaglandin F(2 alpha) isoprostanes in CFS/ME compared to HC at rest	Spence, et al, 2008
<lps at="" cfs="" compared="" cytokines="" hc="" in="" induced="" me="" p="" pro-inflammatory="" psychological="" rest<="" stress="" to="" under=""></lps>	Gaab et al, 2005
> CRP in CF cases not meeting the CFS/ME definition; no difference between CFS/ME and HC at rest	Raison et al, 2009
Abnormal pattern of cortisol over 24 hours associated with elevated fatigue.	Torres-Harding, et al 2009
<cortisol a="" and="" associated="" cbt="" cfs="" cortisol)="" diurnal="" flattened="" in="" levels="" me.<="" of="" p="" poorer="" release="" response="" to="" with=""></cortisol>	Roberts, et al., 2010
Variations in the 5' region of NR3C1 (glucocorticoid receptor gene) in CFS/ME compared to HC at rest.	Rajeevan et al., 2007
HPA axis dysfunction in CFS/ME compared to HC at rest.	Papadopoulos & Cleare, 2011
HPA axis dysfunction CFS/ME compared to HC at rest.	Ben-Zvi, et al., 2009
No evidence for biomarkers using gene expression in a twin study.	Byrnes et al., 2009
Significant evidence for a heritable contribution to predisposition to CFS/ME.	Albright, et al, 2011
Gene expression revealed 'CFS signature genes'.	Kerr, et al., 2008
Reassessment of 'CFS signature genes' failed to confirm predictive ability.	Frampton, et al., 2011

Brain Behav Immun. 2012 Nov;26(8):1202-10. doi: 10.1016/j.bbi.2012.06.006.

Biomarkers for chronic fatigue.

Klimas NG¹, Broderick G, Fletcher MA.

	Friedman Test Result: Significant Values (p <.05) in Bold		
8	CFS/ME (N=23)	HC (N=34)	
%CD26+CD2+ (T & NK cells)	<.000 (↓)	<.000 (↓)	
rMoICD26/CD2+ (T & NK cells)	0.004 (↓)	<.000 (↑)	
NPY (pMol/L plasma)	0.436	<.000 (↑)	
IL-6 (pg/ml plasma)	0.607	0.008 (↑)	
IL-10 (pg/ml plasma)	0.857	0.001 (†)	
IL-12p70 (pg/ml plasma)	0.354	0.002 (↑)	
TNFα (pg/ml plasma)	0.624	0.007 (†)	
rMolPerforin/NK cell	0.012 (†)	<.000 (†)	
NKCC (%)	0.023 (†)	0.001 (†)	

Chronic Fatigue Syndrome: The Current Status and Future Potentials of Emerging Biomarkers.

Fischer DB, William AH, Strauss AC, Unger ER, Jason L, Marshall GD Jr, Dimitrakoff JD. Fatigue. 2014 Jun 1;2(2):93-109.

Immunological Biomarkers

Biomarker	Findings
Cytokine markers	High levels of TNF- α , IL-1, PMN-elastase, lysozyme, and
	serum neopterin
	Increased levels of IL-10.
	Decreased IFN-γ/IL-10 ratio
	T _H 2 shift
NK surface markers	CD26 and CD69 reduced on CD8+ T cells and NK cells
Humoral immunity	Rituximab led to symptom improvement in patients with CFS
Inflammatory characteristics	Increased histone deacetylase activity and lower total antioxidant power.
	Decreased plasma cortisol.
	Increased plasma dehydroepiandrosterone.
Cellular cytotoxic findings	VPACR2 highly expressed on T cells